

Welcome to ANCB’s documentation!

Another Numpy Circular Buffer is an efficient, fast, and powerful NumPy
compatible circular buffers for use in data processing, especially
real-time data processing.

Installation

At the command line:

$ pip3 install ancb

Contents:

	Basic Usage
	Instantiation

	Buffer operations

	Overloaded Operations

	A Caveat: Matrix Multiplication

	About ANCB

	ancb package
	Module contents

Basic Usage

A great feature of ancb.NumpyCircularBuffer is that it inherits from numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray].
Many features of ndarray are also true of NumpyCircularBuffer.

Instantiation

NumpyCircularBuffer requires an ndarray to use for storage of data elements.

import numpy as np
from ancb import NumpyCircularBuffer

data = np.empty(3)
buffer = NumpyCircularBuffer(data)

The first dimension of the ndarray used to declare a NumpyCircularBuffer is always the length
of the buffer. For example if the buffer is (N, a, b) it would be an N length buffer of array
elements of shape (a, b).

Buffer operations

Say we have predeclared a buffer that stores 3D vectors as rows.

import numpy as np
from ancb import NumpyCircularBuffer
data = np.empty((3, 3))
buffer = NumpyCircularBuffer(data)

Appending and popping elements are done through the ancb.NumpyCircularBuffer.append()
and the ancb.NumpyCircularBuffer.pop() functions. ancb.NumpyCircularBuffer.peek() can
be used if you don’t want to consume the element at the beginnning of the buffer.

>>> buffer.append([0, 1, 2])
>>> buffer.append([3, 4, 5])
>>> buffer.append([6, 7, 8])
>>> buffer
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

Note, while popping an element does not fill the space it used to fill with zeros
or anything, it simply just marks the space as available to be filled for another element.

>>> buffer.pop()
array([0, 1, 2])
>>> buffer.pop()
array([3, 4, 5])
>>> buffer.pop()
array([6, 7, 8])
>>> buffer
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])

You can check if a buffer is full or empty using the useful properties
ancb.NumpyCircularBuffer.full() and ancb.NumpyCircularBuffer.empty().
These are convience O(1) operations that check the number of elements in the buffer
and do a comparison to see if it’s full or empty.

>>> buffer.empty
True
buffer.full
False
>>> buffer.append([0, 1, 2])
>>> buffer.empty
False
>>> buffer.full
False
>>> buffer.append([3, 4, 5])
>>> buffer.append([6, 7, 8])
>>> buffer.full
True
>>> buffer.empty
False

As a quick explaination of circular buffers, when you write to a full buffer, the oldest
element is overwritten.

>>> buffer.append([9, 10, 11])
>>> buffer
array([[9, 10, 11], <- end (append will write to the next element)
 [3, 4, 5], <- start (popping will give you this element)
 [6, 7, 8]])

Another useful property to test if you’re intending on making your own wrapper functions
is fragmentation. Roughly speaking, when the elements are no longer contigously placed
(when the end of the buffer occurs in the data before the beginning as above), the
buffer is said to be fragmented.

There is another O(1) operation that checks the position of the beginning and end of the buffer
along with its current size to determine if it’s fragmented.

>>> buffer.fragmented
True
>>> buffer.append([12, 13, 14])
>>> buffer.append([15, 16, 17])
>>> buffer
array([[9, 10, 11],
 [12, 13, 14],
 [15, 16, 17]])
>>> buffer.fragmented
False
>>> buffer.pop()
array([9, 10, 11])
>>> buffer.fragmented
False

Overloaded Operations

While all of this is useful, perhaps what is more interesting is the idea of using
such a buffer for data processing. Let’s imagine a scenario where you want to weight the
data by a vector such as [1, 0.5, 0.25] so that each element is weighted half as much as the one
before it.

If the data was coming in live, we would have no choice but to use numpy.roll() [https://numpy.org/doc/1.20/reference/generated/numpy.roll.html#numpy.roll] on the data
so that it aligns with our weights array. Even if we try to use a circular buffer, it turns out
that the gains in performance by using it are lost when we are forced to roll the array
for our algorithm since numpy.roll() [https://numpy.org/doc/1.20/reference/generated/numpy.roll.html#numpy.roll] has to every element in the array
and move it to a new location.

Fortunately, NumpyCircularBuffer recognizes that you shouldn’t need to reorder elements
before you do the operation. Since we know where the buffer fragments, we can simply
add the end of the buffer to the end of the array and the start of the buffer to the
start of the array at no extra cost.

All this shuffling takes place behind the scenes, so you can do:

>>> buffer.append([18, 19, 20])
>>> buffer
array([[18, 19, 20],
 [12, 13, 14],
 [15, 16, 17]])
>>> buffer * np.array([0.25, 0.5, 1]).reshape(3, 1)
array([[3. , 3.25, 3.5],
 [7.5 , 8. , 8.5],
 [18. , 19. , 20.])

A Caveat: Matrix Multiplication

Most of the library has no overhead; however, an exception to this are certain kinds of
matrix multiplication. I will outline the cases below.

Right matrix multiplication (x @ buffer) if the buffer is fragmented:

	x.ndim == 1 and buffer.ndim > 1 or

	x.ndim > 1 and buffer.ndim == 1 or

	buffer.ndim == 2

Left matrix multiplication (buffer @ x) if the buffer is fragmented:

	buffer.ndim == 1

In all of these cases, the overhead is a memory allocation of an ndarray equal to the size
of the output. For all functions in ANCB, the specified operation takes place in two seperate
parts; however, for these kinds of matrix multiplication, the parts overlap and must be added
together for the final result unlike other functions.

The functions ancb.NumpyCircularBuffer.matmul() and ancb.NumpyCircularBuffer.rmatmul()
have been provided to combat this overhead. They allow you to use preallocated space to reduce
the overhead of the allocations for repeated operations such as in a loop.

import numpy as np
from ancb import NumpyCircularBuffer

data = np.empty(3)
buffer = NumpyCircularBuffer(data)

buffer.append(0)
buffer.append(1)
buffer.append(2)
buffer.append(3)

A = np.arange(9).reshape(3, 3)
work_buffer = empty(3)

Same as A @ buffer
print(buffer.rmatmul(A, work_buffer))

[8 26 44]

About ANCB

Another NumPy Circular Buffer is another attempt to leverage Python’s Numpy library
to implement the circular buffer (ring buffer) data structure. While it is relatively
easy to implement a circular buffer (ring buffer) data structure, it is relatively
hard to make NumPy ndarray operations work with them.

Most implementations are a class that expose append and pop methods and use NumPy
for allocating the data that backs the buffer; however, trying to use such a
buffer with NumPy requires the same amount of overhead as other common solutions to
using a buffer such as collections.deque [https://docs.python.org/3/library/collections.html#collections.deque] or numpy.roll() [https://numpy.org/doc/1.20/reference/generated/numpy.roll.html#numpy.roll], which
reallocates new arrays when (for the case of collections.deque [https://docs.python.org/3/library/collections.html#collections.deque])
converted to a numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray] or rolled into order (in the case of more common
NumPy circular buffer implementations).

This means for most other implementations that want to use NumPy ufuncs to process data,
first the data must always be copied into a newly allocated ndarray.

This is where ANCB comes in. ANCB implements ufunc operations on a circular buffer. Unlike
other implementations, ANCB guarantees that all supported operations will never perform
extra copying or rearranging of array elements unless explicitly mentioned. An example
of addition is shown below.

[insert image here]

This reduces the overhead of allocating a new array and copying elements, which can
be significant for very large buffers or frequently used buffers in loops.

ANCB was developed primarily by Drason “Emmy” Chow during their time at IU: Bloomington
working as a Undergraduate Research Assistant. Inefficient control loops of various motion
control algorithms required continuous buffers of data that were rolled, creating large
performance bottlenecks. Work was done on ANCB to resolve such bottlenecks.

ancb package

Module contents

	
class ancb.NumpyCircularBuffer(data, bounds: Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (0, 0))

	Bases: numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray]

Implements a circular (ring) buffer using a numpy array. This
implmentation uses an internal size count and capacity count so that
the data region is fully utilized.

	
all(*args, **kwargs)

	Returns True if all elements evaluate to True.

	Returns

	True if all elements evaluate to True, False otherwise.

See also

ndarray.all()

	
any(*args, **kwargs)

	Returns True if any elements evaluate to True.

	Returns

	True if any elements evaluate to True, False otherwise.

See also

ndarray.any()

	
append(value)

	Append a value to the buffer on the right. If the buffer is full, the
buffer will advance forward (wrapping around at the ends) and overwrite
an element.

Time complexity: O(1)

See also

NumpyCircularBuffer.pop(), NumpyCircularBuffer.peek()

	
argmax(*args, **kwargs)

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
argmin(*args, **kwargs)

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
byteswap(inplace=False)

	Swap the bytes of the array elements over the valid range of the buffer

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place. Arrays of
byte-strings are not swapped. The real and imaginary parts of a complex
number are swapped individually.

See also

ndarray.byteswap()

	
choose(choices, out=None, mode='raise')

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function is being considered for implementation in the future

	
clip(min=None, max=None, out=None, **kwargs)

	Return an array whose values are limited to [min, max] over the valid
range of the buffer. One of max or min must be given.

See also

numpy.clip() [https://numpy.org/doc/1.20/reference/generated/numpy.clip.html#numpy.clip]

	
conj()

	Complex-conjugate all elements over the valid range of the buffer.

See also

numpy.conjugate()

	
conjugate()

	Complex-conjugate all elements over the valid range of the buffer.

See also

numpy.conjugate()

	
copy(order='C', defrag=False)

	Return a copy of the array over the valid range of the buffer.

See also

ndarray.copy()

	
cumprod(axis=None, dtype=None, out=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
cumsum(axis=None, dtype=None, out=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
diagonal(offset=0, axis1=0, axis2=1) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
dot(b, out=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
dump(b, out=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
dumps(b, out=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
property empty

	Property that returns True if the buffer is empty, False otherwise.

Time complexity: O(1)

	Returns

	True if buffer is empty, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

NumpyCircularBuffer.full()

	
fill(value)

	Fill the valid region of the buffer with a scalar value.

	Parameters

	value ((scalar)) – All elements of a will be assigned this value.

See also

ndarray.fill()

	
flatten(order='C', defrag=False)

	Return a copy of the array collapsed into one dimension.

See also

ndarray.flatten()

	
property fragmented

	Property that returns True if the buffer is fragmented (the
beginning index is greater than the end index), False otherwise.

Time complexity: O(1)

	Returns

	True if buffer is fragmented, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property full

	Property that returns True if the buffer is full, False otherwise.

Time complexity: O(1)

	Returns

	True if buffer is full, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

NumpyCircularBuffer.empty()

	
get_partions() → Union[numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray], Tuple[numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/1.20/reference/generated/numpy.ndarray.html#numpy.ndarray]]]

	Gets a slice of the buffer between the beginning and end indices.
If the buffer is fragmented, a tuple of two slices of the two
fragments sequentially. Concatenating the slices in the order they are
in the tuple will return a list of elements in the correct order.

Time complexity: O(1)

	Returns

	slice or tuple of slices of the array elements in order

	Return type

	Union[ndarray, Tuple[ndarray, ndarray]]

	
getfield(offset=0) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function is being considered for implementation in the future

	
item(*args) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function is being considered for implementation in the future

	
itemset(*args) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
max(axis=None, out=None, keepdims=False, initial=None, where=True) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
min(axis=None, out=None, keepdims=False, initial=None, where=True) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
newbyteorder(new_order='S') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
nonzero() → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function has no plan for implementation as of this version.

	
peek()

	Gets the element at the start of the buffer without advancing the
start of the buffer.

Time complexity: O(1)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if buffer is empty

	Returns

	element at the start of the buffer

See also

NumpyCircularBuffer.pop(), NumpyCircularBuffer.append()

	
pop()

	Gets the element at the start of the buffer and advances the start
of the buffer by one, consuming the element returned.

Time complexity: O(1)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if buffer is empty

	Returns

	element at the start of the buffer

See also

NumpyCircularBuffer.peek(), NumpyCircularBuffer.append()

	
prod(dtype=None, out=None, keepdims=False, initial=1, where=True) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
ptp(out=None, keepdims=False) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
put(values, mode='raise') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function has no plan for implementation as of this version.

	
ravel() → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
repeat() → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
reset()

	Empties all elements from the buffer.

Time complexity: O(1)

	Returns

	True if buffer is empty, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
round(decimals=0, out=None)

	Return a copy of the valid region of the buffer with each element
rounded to the given number of decimals.

See also

numpy.around() [https://numpy.org/doc/1.20/reference/generated/numpy.around.html#numpy.around]

	
searchsorted(v, side='left', sorter=None) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function has no plan for implementation as of this version.

	
setfield(val, dtype, offset=0) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function has no plan for implementation as of this version.

	
squeeze(axis=- 1) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
std(axis=- 1) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
sum(axis=- 1, dtype=None, out=None, keepdims=False, initial=0, where=True) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
swapaxes(axis1, axis2) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function is being considered for implementation in the future

	
take(indices, axis=None, out=None, mode='raise') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
tobytes(order='C') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
tofile(fid, sep='', format='%s') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
tolist() → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
tostring(order='C') → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
transpose(*axes) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function has no plan for implementation as of this version.

	
var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) → NoReturn

	
	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – This function will be implemented in the future

	
ancb.can_broadcast(shape1, shape2) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if shapes shape1 and shape2 can be broadcast together.

	Parameters

	
	shape1 (Tuple) – first shape to parse

	shape2 (Tuple) – second shape to parse

	Returns

	True if arr1 and arr2 can be broadcast together, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
ancb.star_can_broadcast(starexpr) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if shapes shape1 and shape2 can be broadcast together from a
tuple of zip_longest(shape1, shape2, fillvalue=1) called the “starexpr”

	Parameters

	starexpr (Tuple) – starexpr to parse

	Returns

	True if shape1 and shape2 can be broadcast together, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 ancb	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	all() (ancb.NumpyCircularBuffer method)

 	
 ancb

 	module

 	
 	any() (ancb.NumpyCircularBuffer method)

 	append() (ancb.NumpyCircularBuffer method)

 	argmax() (ancb.NumpyCircularBuffer method)

 	argmin() (ancb.NumpyCircularBuffer method)

B

 	
 	byteswap() (ancb.NumpyCircularBuffer method)

C

 	
 	can_broadcast() (in module ancb)

 	choose() (ancb.NumpyCircularBuffer method)

 	clip() (ancb.NumpyCircularBuffer method)

 	conj() (ancb.NumpyCircularBuffer method)

 	
 	conjugate() (ancb.NumpyCircularBuffer method)

 	copy() (ancb.NumpyCircularBuffer method)

 	cumprod() (ancb.NumpyCircularBuffer method)

 	cumsum() (ancb.NumpyCircularBuffer method)

D

 	
 	diagonal() (ancb.NumpyCircularBuffer method)

 	dot() (ancb.NumpyCircularBuffer method)

 	
 	dump() (ancb.NumpyCircularBuffer method)

 	dumps() (ancb.NumpyCircularBuffer method)

E

 	
 	empty() (ancb.NumpyCircularBuffer property)

F

 	
 	fill() (ancb.NumpyCircularBuffer method)

 	flatten() (ancb.NumpyCircularBuffer method)

 	
 	fragmented() (ancb.NumpyCircularBuffer property)

 	full() (ancb.NumpyCircularBuffer property)

G

 	
 	get_partions() (ancb.NumpyCircularBuffer method)

 	
 	getfield() (ancb.NumpyCircularBuffer method)

I

 	
 	item() (ancb.NumpyCircularBuffer method)

 	
 	itemset() (ancb.NumpyCircularBuffer method)

M

 	
 	max() (ancb.NumpyCircularBuffer method)

 	min() (ancb.NumpyCircularBuffer method)

 	
 	
 module

 	ancb

N

 	
 	newbyteorder() (ancb.NumpyCircularBuffer method)

 	
 	nonzero() (ancb.NumpyCircularBuffer method)

 	NumpyCircularBuffer (class in ancb)

P

 	
 	peek() (ancb.NumpyCircularBuffer method)

 	pop() (ancb.NumpyCircularBuffer method)

 	
 	prod() (ancb.NumpyCircularBuffer method)

 	ptp() (ancb.NumpyCircularBuffer method)

 	put() (ancb.NumpyCircularBuffer method)

R

 	
 	ravel() (ancb.NumpyCircularBuffer method)

 	repeat() (ancb.NumpyCircularBuffer method)

 	
 	reset() (ancb.NumpyCircularBuffer method)

 	round() (ancb.NumpyCircularBuffer method)

S

 	
 	searchsorted() (ancb.NumpyCircularBuffer method)

 	setfield() (ancb.NumpyCircularBuffer method)

 	squeeze() (ancb.NumpyCircularBuffer method)

 	
 	star_can_broadcast() (in module ancb)

 	std() (ancb.NumpyCircularBuffer method)

 	sum() (ancb.NumpyCircularBuffer method)

 	swapaxes() (ancb.NumpyCircularBuffer method)

T

 	
 	take() (ancb.NumpyCircularBuffer method)

 	tobytes() (ancb.NumpyCircularBuffer method)

 	tofile() (ancb.NumpyCircularBuffer method)

 	
 	tolist() (ancb.NumpyCircularBuffer method)

 	tostring() (ancb.NumpyCircularBuffer method)

 	transpose() (ancb.NumpyCircularBuffer method)

V

 	
 	var() (ancb.NumpyCircularBuffer method)

ancb

	ancb package
	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to ANCB’s documentation!

 		
 Basic Usage

 		
 Instantiation

 		
 Buffer operations

 		
 Overloaded Operations

 		
 A Caveat: Matrix Multiplication

 		
 About ANCB

 		
 ancb package

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

